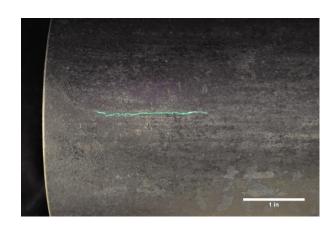
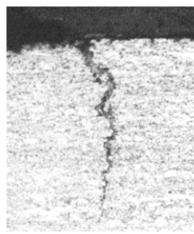
SURFACE INTEGRITY INSTITUTE

Mitigation of Sulfide Stress Cracking

Failure Prevention in Downhole Environments

Supported by:


Detrimental Effects of Sulfide Stress Cracking

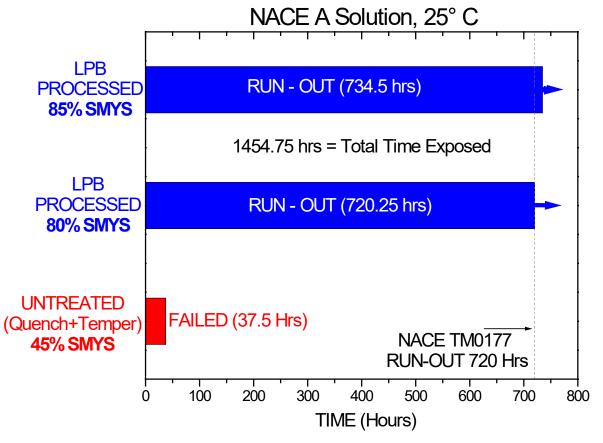

- Caused by combined effects of sour gas (H₂S) and tensile stress
- Commonly found in steel downhole tubular components
- Threshold stress levels are typically very low
- Leads to unanticipated catastrophic failures

Consequences

- Potential catastrophic failure
- Frequent Inspection
- Frequent replacement of parts

SSC in UNTREATED TUBE

Common Treatments


- Minimize exposure of sour gas (H₂S) medium to SSC-prone components in design or operations changing design or operations could be cost-prohibitive
- Frequent inspection for corrosion and cracking damage very difficult for components with low damage tolerance; limitations on frequency of inspection; components may not be easy to inspect once they're in place
- Use of corrosion protection coatings most coatings are not environmentally friendly and local breakdown of coatings would exacerbate the problem
- Replace parts frequently Increases total ownership costs

These treatment methods aim to minimize effects of sulfide cracking, with varying degrees of success.

Designed Compression

API P110 STEEL COUPLING PRESSURE TEST

Benefits

- Extend Component Life
- No Material Replacement
- No Redesign
- Improve Damage Tolerance
- Reduce Risk of Failure
- Improve Cost Savings

Improve Damage Tolerance with Designed Compression A Cost-Effective Solution to Mitigate the Effects of SSC