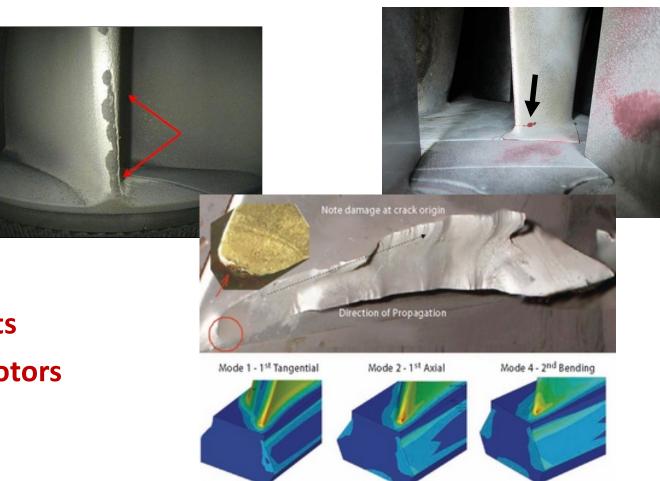
SURFACE INTEGRITY INSTITUTE

Mitigation of Fatigue Failure from Erosion Damage

Cost-Effective Life Extension for Gas Turbine Engines

Supported by:

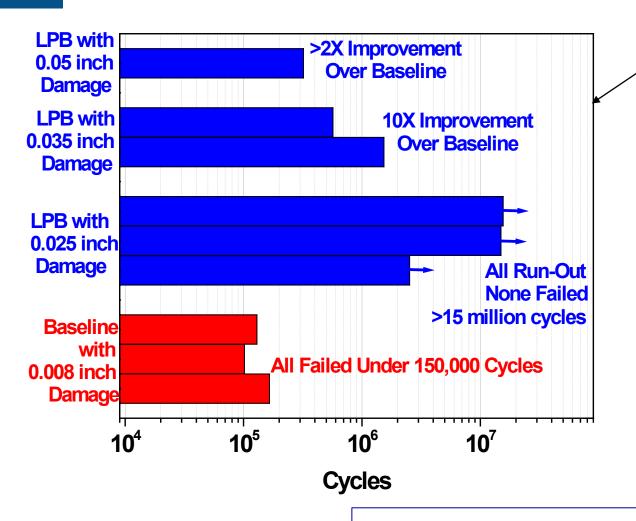

Detrimental Effects of Erosion Damage

- Caused by particle or water droplet impingement on edges of blades and other airfoils
- Typical limiting erosion damage: <0.01 inch (0.25 mm)
- Appears as pits or grooves on the airfoil edges

Consequences

- Fatigue cracks initiate from erosion pits
- Premature retirement of blades and rotors
- Potential catastrophic failure
- Frequent Inspection

Erosion related damage tolerance requires frequent inspection, blending, and costly downtime.


Common Treatments

- Minimize sand or moisture ingestion into the turbine engine through changes in design or operations – changing engine design or operations could be costprohibitive
- Frequent inspection for erosion damage very difficult for components with low damage tolerance; limitations on frequency and difficulty of inspection
- Blending the erosion damage to remove stress concentration Engine downtime, reduced operation efficiency
- Use of hard coatings like Co-WC local breakdown of coatings exacerbates the problem
- Replace parts frequently Increases total ownership costs

These treatment methods aim to minimize effects of erosion damage with varying degrees of success.

Designed Compression

Designed Compression Applied to GE 7F RO Blades for Erosion Mitigation

Benefits

- Extend Component Life
- No Material Replacement
- No Redesign
- Improve Damage Tolerance
- Reduce Risk of Failure
- Improve Cost Savings

Improved Damage Tolerance
Cost-Effective Life Extension for Gas Turbine Engines